If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=u^2+32u-60
We move all terms to the left:
0-(u^2+32u-60)=0
We add all the numbers together, and all the variables
-(u^2+32u-60)=0
We get rid of parentheses
-u^2-32u+60=0
We add all the numbers together, and all the variables
-1u^2-32u+60=0
a = -1; b = -32; c = +60;
Δ = b2-4ac
Δ = -322-4·(-1)·60
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-4\sqrt{79}}{2*-1}=\frac{32-4\sqrt{79}}{-2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+4\sqrt{79}}{2*-1}=\frac{32+4\sqrt{79}}{-2} $
| 5x+3x-20=180-x | | 2x+1+x4=x+16+x | | -5x-19=16 | | x+13=4x-8 | | t÷5-1=16 | | 4^x-5=78 | | 11h-4h+1-53=11 | | 4y-23+2y-2=y+5 | | a/3+2a/3-4=10 | | 5y-12=12 | | 10^2+6^2=c^2 | | x+3=215 | | y3-49y=0 | | 7(4w+9)=-4/4 | | 2(x-4)=6x+14 | | 47=v/2+17 | | (2x-14)^2=45 | | N=323n-5= | | w^2=4/25 | | (2x-14)^2=24 | | -5(2t+4)=-70 | | v/5+9=13 | | x9+5x+6=0 | | C=2x22/7x21/16 | | s2-7s+14=0 | | 2(5x+2)=-5(3x-1) | | 10(s-10)=-206 | | d^2-12=0 | | X÷3=2x+5 | | 4v+13=93 | | 16.5c-2(c+0.6)=288.8 | | d^2=9/16 |